Deep learning compound trend prediction model for hydraulic turbine time series
Lei Xiong,
Jiajun Liu,
Bo Song,
Jian Dang,
Feng Yang and
Haokun Lin
International Journal of Low-Carbon Technologies, 2021, vol. 16, issue 3, 725-731
Abstract:
As a clean energy with mature technology, hydropower has been widely applied in industry. The hydraulic turbine unit plays an important role in hydropower station. Since the fault of turbine unit will affect the normal operation of the whole hydropower station, this paper proposes a universal, fast and memory-efficient method trend for time-series prediction of hydraulic turbines. The proposed method adopts the expressive power of deep neural networks and the time characteristics of sequence-to-sequence structure (parallel convolution and recurrent neural network) to make time-series prediction. It also uses convolutional quantile loss and memory network to predict future extreme events. The experimental results show that the proposed method is fast, robust and accurate. It can reduce at least 34% in mean square error and 33% in convergence speed compared with the existing methods.
Keywords: hydraulic turbine; time series prediction; deep neural networks; convolutional quantile loss; memory network (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctaa106 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:16:y:2021:i:3:p:725-731.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().