EconPapers    
Economics at your fingertips  
 

Intelligent energy optimization system development and validation for German building types

The governance of the European Energy Union: efficiency, effectiveness and acceptance of the Winter Package 2016

H Ufuk Gökçe and K Umut Gökçe

International Journal of Low-Carbon Technologies, 2021, vol. 16, issue 4, 1299-1316

Abstract: Cost-effective building energy optimization solutions have a strategic function to assist German and European energy policies for the simple reason that buildings account for 40% of the total energy consumption in Europe. The International Energy Agency considers energy efficiency as the first fuel and a major resource. In this work, a cost-effective building energy optimization system consisting of 14 different wireless network embedded sensors, control units (actuators), wireless communication protocol, multi-dimensional information management system, context sensitive graphical user interfaces and energy optimization software with artificial intelligence-backed control algorithms is examined. The R&D activity is accomplished in the ‘Intelligent Building Energy Management System’ research project, which is funded by the State of Lower Saxony (Germany) in the frame of Innovation Support Program between the years 2014 and 2018. The ‘Energy Optimization System (EOS)’, which is subject to this research, reduces the total energy use and CO2 emissions of buildings through optimization of energy-consuming building systems, such as heating, cooling, lighting systems and home/office appliances with the support of an integrated system solution consisting of artificial intelligence-based software and wireless network embedded hardware. The system is deployed and validated in two appropriately selected test buildings in Germany. It has been recorded that the system provides energy efficiency levels between 29.34% and 38.18% under different seasonal and occupancy conditions in office and residential building types. The developed system can be deployed to all types of historical and new buildings to optimize energy consumption and reduce carbon emissions.

Keywords: energy efficiency; data warehouse technologies; decision support systems; system development; information management; smart buildings (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctab049 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1299-1316.

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1299-1316.