Integrated modeling and feasibility analysis of a rooftop photovoltaic systems for an academic building in Bangladesh
Techno-economic impacts analysis of a hybrid grid connected energy system applied for a cattle farm
Amit Kumer Podder,
Anik Kumar Das,
Eklas Hossain,
Nallapaneni Manoj Kumar,
Naruttam Kumar Roy,
Hassan Haes Alhelou,
Alagar Karthick and
Amer Al-Hinai
International Journal of Low-Carbon Technologies, 2021, vol. 16, issue 4, 1317-1327
Abstract:
This paper presents integrated modeling and feasibility analysis of a rooftop photovoltaic system (RPS) for an academic building in Bangladesh. The average daily load is 353.63 kWh/day, and the peak load demand for the studied region is 90.85 kW. Four different configurations of 46 kW, 64 kW, 91 kW and 238 kW photovoltaic (PV) systems are designed and compared based on the financial, sensitivity and environmental benefit analysis to find out the most optimized one. The total net present cost, cost of energy, internal rate of return and payback period for the 91 kW (most optimized) system are found to be $146 317, $0.0385, 120.3% and 8.3 years, respectively. Seven sensitivity variables are utilized to investigate the system’s performance due to the variation of input variables, ensuring that the optimized system is less vulnerable than others. Besides, the proposed RPS (91 kW) for the selected region reduces the CO2 emanation by 90 010 kg/year and has a negligible shading effect compared to the amount of electricity generation from it.
Keywords: integrated modelling; academic building; Bangladesh; feasibility study; rooftop solar PV system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctab056 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1317-1327.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().