Effect of inlet/outlet on thermal performance of naturally ventilated building
Investigating the effect of using PCM in building materials for energy saving: case study of Sharif Energy Research Institute
Dhahri Maher,
Aouinet Hana,
Jamal Tabe Arjmand,
Alibek Issakhov,
Habib Sammouda,
Mikhail Sheremet and
Shubham Sharma
International Journal of Low-Carbon Technologies, 2021, vol. 16, issue 4, 1348-1362
Abstract:
Ventilation is a way of improving the air quality of rooms by circulation. The position of the inlet and outlet greatly influences the thermal comfort. This attempt proposes to analyse the effect of the position of window openings for a room building with natural ventilation and the air flow and temperature distribution numerically using a commercial computational fluid dynamics (CFD) code. This proposed study consists of (i) approving the numerical model against experimental data gathered in an environment similar to the one used in simulations and (ii) applying the CFD model to explore the results of four varying configurations of ventilator on the natural ventilation system and thermal comfort. For the varying arrangements, the wind speed is 0.2 m⋅s−1 perpendicular to the openings for a wind, (iii) evaluating the comfort level utilizing the Air Diffusion Performance Index (ADPI) on the basis of ASHRAE 55-210 criteria. The obtained results show that the positions of outlet and inlet openings highly affect the performance in the thermal comfort while they have a trivial effect on the occupied zone mean velocity. The computational results showed that the two cases (a) and (b) present results very close to each other with a slight difference at the center of the chamber. Most of the calculated values (effective draft temperature, EDT) are between (−1.7 and 1.1). Then ADPI is over 70% for case (a) and over 75% for case (b), so all points they are located in the comfort zone. The results affirmed also that configuration with inlet openings set at 1.022 m above ground and an outlet opening set at 0.52 m brings about the most applicable solution ventilation efficiency and give the best EDT that fulfills the criteria of ASHRAE 55-210 with an ADPI of ~90%.
Keywords: building; ventilation; comfort; computational fluid dynamic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctab055 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:16:y:2021:i:4:p:1348-1362.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().