Research on the strategy of lithium-ion battery–supercapacitor hybrid energy storage to suppress power fluctuation of direct current microgrid
Load frequency control of a novel renewable energy integrated micro-grid containing pumped hydropower energy storage
Wei Zhang,
Ming Zhong,
Junfei Han,
Yumei Sun and
Yang Wang
International Journal of Low-Carbon Technologies, 2022, vol. 17, 1012-1017
Abstract:
The wide application of clean energy has promoted the development of microgrids. For direct current (DC) microgrids, power fluctuations are inevitable, because photovoltaics, wind power and other clean energy sources are very unstable, which will bring great trouble to DC microgrids. Hybrid energy storage systems (HESS) are an effective solution to suppress power fluctuations. For a HESS composed of battery and supercapacitor (SC), a low-pass filter is usually used to allocate energy and power requirements to each energy storage unit, but the filter constant of the filter cannot be dynamically adjusted to adapt to different situations. The low-pass filter compensation coefficient used in this paper will change with the state of charge and discharge and dynamically change and allocate different power requirements to the battery and SC according to the actual operating conditions of the HESS. The objective function of DC bus power fluctuation is established, and the optimized particle swarm algorithm (PSO) is used to obtain the output power coefficient of each energy storage unit. The output coefficient of the HESS control strategy has the characteristics of fast convergence speed and high computational efficiency in the optimization process, and it will not fall into the local optimal solution. Through the design experiment, the SC can withstand more high-frequency components, fully utilize the advantages of SC with fast response to power fluctuations, improve the performance of HESS and have great engineering application value.
Keywords: PSO; supercapacitor; battery; HESS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctac083 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:17:y:2022:i::p:1012-1017.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().