CFD modeling of a horizontal wind turbine by utilizing solar nozzle for power production
Hussein A Z AL-bonsrulah,
Suad Hassan Danook,
Mohammed J Alshukri,
Ali Mahmood Ahmed,
Vijayanandh Raja,
Dhinakaran Veeman and
Mohammed Al-Bahrani
International Journal of Low-Carbon Technologies, 2023, vol. 18, 31-37
Abstract:
In this study, utilizing air velocity by converting wind kinetic energy into mechanical energy due to the converging area, has been numerically studied by proposing a 3D novel model and using ANSYS Fluent 19 software. Solar radiation by using the radiation model (S2S) has been considered to benefit from the heat energy to be converted into kinetic energy of the flow. Ultimate dimensions were calculated for the proposed nozzle is made of glass material. The study concentrates on the utilization of solar nozzles and their effect on wind energy. This study focused on and attempted to increase the local wind velocity (1 m/s) in Kirkuk city in Iraq, to a higher velocity that could produce a large amount of kinetic energy which is then converted to generate power. Hence, increasing the efficiency of the plant. Results showed that wind velocity increases as the heat gain increases and the area decreased. The velocity at the converging position without including the solar radiation model reached about (15.1 m/s), while in the case of enabling the solar radiation, it showed a value of (15.75 m/s). As a result, the power produced from this proposed method has increased by a value of 74 W.
Keywords: wind; turbine; numerical simulation; CFD; power generation; solar nozzle (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctac127 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:18:y:2023:i::p:31-37.
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().