Simulation of a linear Fresnel solar collector concentrator
Jorge Facão and
Armando C. Oliveira
International Journal of Low-Carbon Technologies, 2010, vol. 5, issue 3, 125-129
Abstract:
A trapezoidal cavity receiver for a linear Fresnel solar collector is analysed and optimized via ray-trace and computational fluid dynamics (CFD) simulations. The number of receiver absorber tubes and the inclination of lateral walls in the cavity are checked with simplified ray-trace simulation. The CFD simulation makes possible to optimize cavity depth and rock wool insulation thickness. The simulated global heat transfer coefficient, based on primary mirror area, is correlated with a power-law fit instead of a parabolic fit. The correlation results are compared with heat transfer coefficients available for linear Fresnel collector prototypes. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctq011 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:5:y:2010:i:3:p:125-129
Access Statistics for this article
International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat
More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().