EconPapers    
Economics at your fingertips  
 

Temperature influence on the thermal and structural properties of electrodeposited nanostructured black nickel cermet on high conductive C81100 copper

R.L.P. Teixeira, L. Raniero, R.A. Simao, B. Coelho and A.C. Oliveira

International Journal of Low-Carbon Technologies, 2010, vol. 6, issue 1, 86-92

Abstract: A low-cost, black nickel solar absorber coating, to be used in thermal solar collectors on nanostructured highly thermal conductor copper, was analyzed using the thermoanalytical flash method at 293 K and Cernuschi's two-layer models, to identify the thermal properties of the blackening layers and the energy losses connecting different parameters such as the chemical composition, diffusivity, conductivity, and emittance. The Cernuschi's modelling presents a good approximation of the experimental results. The black nickel layer has low thermal losses, an estimated specific heat of 390 J/(kg K), a thermal conductivity of 105.1 W/(m K) and a thermal diffusivity of 39.4 × 10-super- - 6 m-super-2/s. The black nickel layer has low optical losses and an emittance of 0.09 (293 K), but its thermal stability ends at 473 K, indicating that black nickel above 473 K is not stable and a structure change may occur. Chemical analysis shows that nanostructured black nickel is a cermet mainly composed of two metallic nickel atoms for each nickel and zinc sulphide, i.e. 2 Ni-super-0: NiS: ZnS. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/ijlct/ctq052 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:ijlctc:v:6:y:2010:i:1:p:86-92

Access Statistics for this article

International Journal of Low-Carbon Technologies is currently edited by Saffa B. Riffat

More articles in International Journal of Low-Carbon Technologies from Oxford University Press
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:ijlctc:v:6:y:2010:i:1:p:86-92