Understanding Spurious Regression in Financial Economics
Ai Deng ()
Journal of Financial Econometrics, 2013, vol. 12, issue 1, 122-150
Abstract:
A new asymptotic framework is used to provide finite sample approximations for various statistics in the spurious return predictive regression analyzed by Ferson, Sarkissian, and Simin (2003a). Our theory explains all the findings of Ferson, Sarkissian, and Simin (2003a) and confirms the theoretical possibility of a spurious regression bias. The theory developed in the article has important implications with respect to existing inferential theories in predictive regressions. We also propose a simple diagnostic test to detect potential spurious regression bias in empirical analysis. The test is applied to four variants of the SP500 monthly stock returns and the six Fama-French benchmark portfolio monthly returns. Copyright The Author, 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com, Oxford University Press.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbs025 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
Journal Article: Understanding Spurious Regression in Financial Economics (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:12:y:2013:i:1:p:122-150
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().