EconPapers    
Economics at your fingertips  
 

Limit of Random Measures Associated with the Increments of a Brownian Semimartingale

Jean Jacod

Journal of Financial Econometrics, 2018, vol. 16, issue 4, 526-569

Abstract: We consider a Brownian semimartingale X (the sum of a stochastic integral w.r.t. a Brownian motion and an integral w.r.t. Lebesgue measure), and for each n an increasing sequence T(n, i) of stopping times and a sequence of positive ℱT(n,i)-measurable variables Δ(n,i) such that S(n,i):=T(n,i)+Δ(n,i)≤T(n,i+1). We are interested in the limiting behavior of processes of the form Utn(g)=δn∑i:S(n,i)≤t[g(T(n,i),ξin)−αin(g)], where δn is a normalizing sequence tending to 0 and ξin=Δ(n,i)−1/2(XS(n,i)−XT(n,i)) and αin(g) are suitable centering terms and g is some predictable function of (ω,t,x). Under rather weak assumptions on the sequences T(n, i) as n goes to infinity, we prove that these processes converge (stably) in law to the stochastic integral of g w.r.t. a random measure B which is, conditionally on the path of X, a Gaussian random measure. We give some applications to rates of convergence in discrete approximations for the p-variation processes and local times.

Keywords: limit theorems; triangular arrays; high frequency (search for similar items in EconPapers)
JEL-codes: C40 (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbx021 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:16:y:2018:i:4:p:526-569.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:16:y:2018:i:4:p:526-569.