Fractional Integration and Fat Tails for Realized Covariance Kernels
Anne Opschoor and
Andre Lucas
Journal of Financial Econometrics, 2019, vol. 17, issue 1, 66-90
Abstract:
We introduce a new fractionally integrated model for covariance matrix dynamics based on the long-memory behavior of daily realized covariance matrix kernels. We account for fat tails in the data by an appropriate distributional assumption. The covariance matrix dynamics are formulated as a numerically efficient matrix recursion that ensures positive definiteness under simple parameter constraints. Using intraday stock data over the period 2001–2012, we construct realized covariance kernels and show that the new fractionally integrated model statistically and economically outperforms recent alternatives such as the multivariate HEAVY model and the multivariate HAR model. In addition, the long-memory behavior is more important during non-crisis periods.
Keywords: fractional integration; heavy tails; matrix-F distribution; multivariate volatility; realized covariance matrices; score dynamics (search for similar items in EconPapers)
JEL-codes: C32 C58 (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nby029 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:17:y:2019:i:1:p:66-90.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().