The Threshold GARCH Model: Estimation and Density Forecasting for Financial Returns*
Yuzhi Cai and
Julian Stander
Journal of Financial Econometrics, 2020, vol. 18, issue 2, 395-424
Abstract:
We consider multiple threshold value-at-risk (VaRt) estimation and density forecasting for financial data following a threshold GARCH model. We develop an α-quantile quasi-maximum likelihood estimation (QMLE) method for VaRt by showing that the associated density function is an α-quantile density and belongs to the tick-exponential family. This establishes that our estimator is consistent for the parameters of VaRt. We propose a density forecasting method for quantile models based on VaRt at a single nonextreme level, which overcomes some limitations of existing forecasting methods with quantile models. We find that for heavy-tailed financial data our α-quantile QMLE method for VaRt outperforms the Gaussian QMLE method for volatility. We also find that density forecasts based on VaRt outperform those based on the volatility of financial data. Empirical work on market returns shows that our approach also outperforms some benchmark models for density forecasting of financial returns.
Keywords: α-quantile density; density forecasting; QMLE; threshold; value-at-risk (VaR) (search for similar items in EconPapers)
JEL-codes: C1 C5 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbz014 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:18:y:2020:i:2:p:395-424.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().