Local-Linear Estimation of Time-Varying-Parameter GARCH Models and Associated Risk Measures
Modelling Volatility by Variance Decomposition
Atsushi Inoue,
Lu Jin and
Denis Pelletier
Journal of Financial Econometrics, 2021, vol. 19, issue 1, 202-234
Abstract:
In this article, we propose a nonparametric approach to estimating generalized autoregressive conditional heteroskedasticity (1,1) models with time-varying parameters. We model the time-varying parameters as a smooth function of time and estimate them using a local linear estimator. We show that our estimator is consistent and is asymptotically normal and that the proposed estimator outperforms a rolling window estimator in Monte Carlo simulation experiments. We present strong evidence of parameter instabilities using daily returns of stock indices and explore implications to risk management measures, such as value-at-risk and expected shortfall, through backtesting.
Keywords: time-varying parameters; expected shortfall; value-at-risk; realized volatility (search for similar items in EconPapers)
JEL-codes: C14 C51 C58 (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbaa026 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:19:y:2021:i:1:p:202-234.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().