Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations*
Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion
Simon Scheidegger and
Adrien Treccani
Journal of Financial Econometrics, 2021, vol. 19, issue 2, 258-290
Abstract:
We introduce a novel numerical framework for pricing American options in high dimensions. Our scheme manages to alleviate the problem of dimension scaling through the use of adaptive sparse grids. We approximate the value function with a low number of points and recursively apply fast approximations of the expectation operator from an exercise period to the previous period. Given that available option databases gather several thousands of prices, there is a clear need for fast approaches in empirical work. Our method processes an entire cross section of options in a single execution and offers an immediate solution to the estimation of hedging coefficients through finite differences. It thereby brings valuable advantages over Monte Carlo simulations, which are usually considered to be the tool of choice in high dimensions, and satisfies the need for fast computation in empirical work with current databases containing thousands of prices. We benchmark our algorithm under the canonical model of Black and Scholes and the stochastic volatility model of Heston, the latter in the presence of discrete dividends. We illustrate the massive improvement of complexity scaling over dense grids with a basket option study including up to eight underlying assets. We show how the high degree of parallelism of our scheme makes it suitable for deployment on massively parallel computing units to scale to higher dimensions or further speed up the solution process.
Keywords: adaptive sparse grids; high dimensions; high-performance computing; option pricing (search for similar items in EconPapers)
JEL-codes: C61 C63 G12 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nby024 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:19:y:2021:i:2:p:258-290.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().