Exact Inference in Long-Horizon Predictive Quantile Regressions with an Application to Stock Returns*
Sermin Gungor and
Richard Luger
Journal of Financial Econometrics, 2021, vol. 19, issue 4, 746-788
Abstract:
We develop an exact and distribution-free procedure to test for quantile predictability at several prediction horizons and quantile levels jointly, while allowing for an endogenous predictive regressor with any degree of persistence. The approach proceeds by combining together the quantile regression t-statistics from each considered prediction horizon and quantile level, and uses Monte-Carlo resampling techniques to control the familywise error rate in finite samples. A simulation study confirms that the proposed inference procedure is indeed level-correct and that testing several quantile levels jointly can deliver more power to detect predictability. In an empirical application to excess stock returns, we find that the default yield spread predicts the right tail while the short-term interest rate predicts the center of the return distribution. This predictability evidence is stronger at shorter rather than longer horizons.
Keywords: exact distribution-free inference; multiple comparisons; Monte-Carlo permutation test; predictability; persistent predictor; quantile regression (search for similar items in EconPapers)
JEL-codes: C14 C22 G17 (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbz017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:19:y:2021:i:4:p:746-788.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().