A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility
Jeff Fleming and
Chris Kirby
Journal of Financial Econometrics, 2003, vol. 1, issue 3, 365-419
Abstract:
We show that, for three common SARV models, fitting a minimum mean square linear filter is equivalent to fitting a GARCH model. This suggests that GARCH models may be useful for filtering, forecasting, and parameter estimation in stochastic volatility settings. To investigate, we use simulations to evaluate how the three SARV models and their associated GARCH filters perform under controlled conditions and then we use daily currency and equity index returns to evaluate how the models perform in a risk management application. Although the GARCH models produce less precise forecasts than the SARV models in the simulations, it is not clear that the performance differences are large enough to be economically meaningful. Consistent with this view, we find that the GARCH and SARV models perform comparably in tests of conditional value-at-risk estimates using the actual data. , .
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (36)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:1:y:2003:i:3:p:365-419
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().