Bayesian Semi-Parametric Realized Conditional Autoregressive Expectile Models for Tail Risk Forecasting
On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function
Richard Gerlach and
Chao Wang
Journal of Financial Econometrics, 2022, vol. 20, issue 1, 105-138
Abstract:
A new model framework called Realized Conditional Autoregressive Expectile is proposed, whereby a measurement equation is added to the conventional Conditional Autoregressive Expectile model. A realized measure acts as the dependent variable in the measurement equation, capturing the contemporaneous dependence between it and the latent conditional expectile; it also drives the expectile dynamics. The usual grid search and asymmetric least squares optimization, to estimate the expectile level and parameters, suffers from convergence issues leading to inefficient estimation. This article develops an alternative random walk Metropolis stochastic target search method, incorporating an adaptive Markov Chain Monte Carlo sampler, which leads to improved accuracy in estimation of the expectile level and model parameters. The sampling properties of this method are assessed via a simulation study. In a forecast study applied to several market indices and asset return series, one-day-ahead Value-at-Risk and Expected Shortfall forecasting results favor the proposed model class.
Keywords: expectile; realized measure; Markov Chain Monte Carlo; Value-at-Risk; Expected Shortfall (search for similar items in EconPapers)
JEL-codes: C22 C53 (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbaa002 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:20:y:2022:i:1:p:105-138.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().