The Tail Behavior due to the Presence of the Risk Premium in AR-GARCH-in-Mean, GARCH-AR, and Double-Autoregressive-in-Mean Models*
Stock Returns and Volatility
Christian Dahl and
Emma Iglesias
Journal of Financial Econometrics, 2022, vol. 20, issue 1, 139-159
Abstract:
We extend the results in Borkovec (2000), Basrak, David, and Mikosch (2002a), Lange (2011), and Francq and Zakoïan (2015) by describing the tail behavior when a risk premium component is added in the mean equation of different conditional heteroskedastic processes. We study three types of parametric models: the traditional generalized autoregressive conditional heteroskedastic (GARCH)-M model, the double autoregressive (AR) model with risk premium, and the GARCH-AR model. We find that if an AR process is introduced in the mean equation of a traditional GARCH-M process, the tail behavior is the same as if it is not introduced. However, if we add a risk premium component to the double AR model, then the tail behavior changes with respect to the GARCH-M. The GARCH-AR model also has a different tail index than the traditional AR-GARCH model. In a simulation study, we show that larger tail indexes are associated with the traditional GARCH-M model. When the size of the risk premium component increases, the tail index tends to fall. The only exception to this rule occurs in the double AR model when the risk premium depends on log-volatility. Parameter configurations where the strong stationarity condition of the risk premium models fails are also illustrated and discussed.
Keywords: AR-GARCH; double autoregressive model; GARCH-AR; risk premium; tail behavior (search for similar items in EconPapers)
JEL-codes: C10 C22 (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbaa004 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:20:y:2022:i:1:p:139-159.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().