Intraday Market Predictability: A Machine Learning Approach
Dillon Huddleston,
Fred Liu and
Lars Stentoft
Journal of Financial Econometrics, 2023, vol. 21, issue 2, 485-527
Abstract:
Conducting, to our knowledge, the largest study ever of 5-min equity market returns using state-of-the-art machine learning models trained on the cross-section of lagged market index constituent returns, we show that regularized linear models and nonlinear tree-based models yield significant market return predictability. Ensemble models perform the best across time and their predictability translates into economically significant Sharpe ratios of 0.98 after transaction costs. These results provide strong evidence that intraday market returns are predictable during short time horizons, beyond what can be explained by transaction costs. Furthermore, we show that constituent returns hold significant predictive information that is not contained in market returns or in price trend and liquidity characteristics. Consistent with the hypothesis that predictability is driven by slow-moving trader capital, predictability decreased post-decimalization, and market returns are more predictable during the middle of the day, on days with high volatility or illiquidity, and in financial crisis periods.
Keywords: big data; deep neural networks; elastic net; equity market; Fintech; gradient boosting; high frequency; lasso; machine learning; random forest; return prediction (search for similar items in EconPapers)
JEL-codes: C45 C55 G14 G17 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbab007 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:21:y:2023:i:2:p:485-527.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().