EconPapers    
Economics at your fingertips  
 

Intraday Trades Profile Estimation: An Intensity Approach*

Alessio Sancetta

Journal of Financial Econometrics, 2023, vol. 21, issue 3, 651-677

Abstract: The intraday trades profile is the expected intensity of a counting process where the counts measure the number of trades over an interval. It needs to capture the salient features of the trading activity, its spikes, and periods of relative quietness. This calls for an estimator with a time varying resolution that allows us to identify jumps. The problem can be recast as a regression one, using a fused Lasso penalty. The framework allows us to identify jumps within possibly thousands different locations within a day when the number of trading days at disposal is in the order of hundreds. This can be done without imposing any conditions on the counting process except for certain regularity conditions on the expected intensity. The empirical results suggest that much of the trading activity in some liquid futures can be captured by a deterministic seasonal component in the trade arrival process.

Keywords: algorithmic trading; asymptotic distribution; consistency; counting process; fused Lasso estimator (search for similar items in EconPapers)
JEL-codes: C52 C58 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbab014 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:21:y:2023:i:3:p:651-677.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:21:y:2023:i:3:p:651-677.