Optimal Portfolio Using Factor Graphical Lasso*
Tae Hwy Lee and
Ekaterina Seregina
Journal of Financial Econometrics, 2024, vol. 22, issue 3, 670-695
Abstract:
Graphical models are a powerful tool to estimate a high-dimensional inverse covariance (precision) matrix, which has been applied for a portfolio allocation problem. The assumption made by these models is a sparsity of the precision matrix. However, when stock returns are driven by common factors, such assumption does not hold. We address this limitation and develop a framework, Factor Graphical Lasso (FGL), which integrates graphical models with the factor structure in the context of portfolio allocation by decomposing a precision matrix into low-rank and sparse components. Our theoretical results and simulations show that FGL consistently estimates the portfolio weights and risk exposure and also that FGL is robust to heavy-tailed distributions which makes our method suitable for financial applications. FGL-based portfolios are shown to exhibit superior performance over several prominent competitors including equal-weighted and index portfolios in the empirical application for the S&P500 constituents.
Keywords: approximate factor model; elliptical distributions; Graphical Lasso; high-dimensionality; portfolio optimization; Sharpe ratio (search for similar items in EconPapers)
JEL-codes: C13 C55 C58 G11 G17 (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbad011 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Optimal Portfolio Using Factor Graphical Lasso (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:22:y:2024:i:3:p:670-695.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().