EconPapers    
Economics at your fingertips  
 

Asset Allocation by Variance Sensitivity Analysis

Simone Manganelli

Journal of Financial Econometrics, 2004, vol. 2, issue 3, 370-389

Abstract: This article provides a solution to the curse of dimensionality associated to multivariate generalized autoregressive conditionally heteroskedastic (GARCH) estimation. We work with univariate portfolio GARCH models and show how the multivariate dimension of the portfolio allocation problem may be recovered from the univariate approach. The main tool we use is "variance sensitivity analysis," the change in the portfolio variance induced by an infinitesimal change in the portfolio allocation. We suggest a computationally feasible method to find minimum variance portfolios and estimate full variance-covariance matrices. An application to real data portfolios implements our methodology and compares its performance against that of selected popular alternatives. Copyright 2004, Oxford University Press.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbh015 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:2:y:2004:i:3:p:370-389

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:2:y:2004:i:3:p:370-389