Aggregation of Nonparametric Estimators for Volatility Matrix
Jianqing Fan,
Yingying Fan and
Jinchi Lv
Journal of Financial Econometrics, vol. 5, issue 3, 321-357
Abstract:
An aggregated method of nonparametric estimators based on time-domain and state-domain estimators is proposed and studied. To attenuate the curse of dimensionality, we propose a factor modeling strategy. We first investigate the asymptotic behavior of nonparametric estimators of the volatility matrix in the time domain and in the state domain. Asymptotic normality is separately established for nonparametric estimators in the time domain and state domain. These two estimators are asymptotically independent. Hence, they can be combined, through a dynamic weighting scheme, to improve the efficiency of volatility matrix estimation. The optimal dynamic weights are derived, and it is shown that the aggregated estimator uniformly dominates volatility matrix estimators using time-domain or state-domain smoothing alone. A simulation study, based on an essentially affine model for the term structure, is conducted, and it demonstrates convincingly that the newly proposed procedure outperforms both time- and state-domain estimators. Empirical studies further endorse the advantages of our aggregated method. Copyright , Oxford University Press.
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbm008 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:5:y::i:3:p:321-357
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().