Nonparametric Estimation of Expected Shortfall
Song Chen
Journal of Financial Econometrics, 2008, vol. 6, issue 1, 87-107
Abstract:
The expected shortfall is an increasingly popular risk measure in financial risk management and it possesses the desired sub-additivity property, which is lacking for the value at risk (VaR). We consider two nonparametric expected shortfall estimators for dependent financial losses. One is a sample average of excessive losses larger than a VaR. The other is a kernel smoothed version of the first estimator (Scaillet, 2004 Mathematical Finance), hoping that more accurate estimation can be achieved by smoothing. Our analysis reveals that the extra kernel smoothing does not produce more accurate estimation of the shortfall. This is different from the estimation of the VaR where smoothing has been shown to produce reduction in both the variance and the mean square error of estimation. Therefore, the simpler ES estimator based on the sample average of excessive losses is attractive for the shortfall estimation. Copyright 2007 The Authors, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (54)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbm019 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:6:y:2008:i:1:p:87-107
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().