Kernel Conditional Quantile Estimation for Stationary Processes with Application to Conditional Value-at-Risk
Wei Biao Wu,
Keming Yu and
Gautam Mitra
Journal of Financial Econometrics, 2008, vol. 6, issue 2, 253-270
Abstract:
The paper considers kernel estimation of conditional quantiles for both short-range and long-range-dependent processes. Under mild regularity conditions, we obtain Bahadur representations and central limit theorems for kernel quantile estimates of those processes. Our theory is applicable to many price processes of assets in finance. In particular, we present an asymptotic theory for kernel estimates of the value-at-risk (VaR) of the market value of an asset conditional on the historical information or a state process. The results are assessed based on a small simulation and are applied to AT&T monthly returns. Copyright The Author 2007. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbm022 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:6:y:2008:i:2:p:253-270
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().