EconPapers    
Economics at your fingertips  
 

MCMC Estimation of the COGARCH(1,1) Model

Gernot Müller

Journal of Financial Econometrics, 2010, vol. 8, issue 4, 481-510

Abstract: This paper presents a Markov chain Monte Carlo (MCMC)-based estimation procedure for the COGARCH(1,1) model driven by a compound Poisson process. The COGARCH model is a continuous-time analogue to the discrete-time GARCH model and captures many of the stylized facts of financial time series, as has been shown in various papers. Principles for the estimation of point processes by MCMC are adapted to the special structure of the COGARCH(1,1) model. The algorithm uses discrete GARCH-type equations on a random grid which changes in each iteration of the MCMC sampler. Moreover, exact solutions of the volatility SDE of the COGARCH(1,1) model are available on this grid, so that no approximations of the COGARCH equations are necessary. The method is also applicable to irregularly spaced observations. A simulation study illustrates the quality of the MCMC estimates. Finally we fit the COGARCH(1,1) model to high-frequency data of the S&P500. Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbq029 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:8:y:2010:i:4:p:481-510

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani

More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:jfinec:v:8:y:2010:i:4:p:481-510