Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods
Jim Griffin
Journal of Financial Econometrics, 2011, vol. 9, issue 3, 519-549
Abstract:
This paper describes a Bayesian nonparametric approach to volatility estimation. Volatility is assumed to follow a superposition of an infinite number of Ornstein--Uhlenbeck processes driven by a compound Poisson process with a parametric or nonparametric jump size distribution. This model allows a wide range of possible dependencies and marginal distributions for volatility. The properties of the model and prior specification are discussed, and a Markov chain Monte Carlo algorithm for inference is described. The model is fitted to daily returns of four indices: the Standard and Poors 500, the NASDAQ 100, the FTSE 100, and the Nikkei 225. (JEL: C11, C14, C22) Copyright The Author 2011. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/jjfinec/nbq027 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:jfinec:v:9:y:2011:i:3:p:519-549
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Journal of Financial Econometrics is currently edited by Allan Timmermann and Fabio Trojani
More articles in Journal of Financial Econometrics from Oxford University Press Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK. Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().