Logs with Zeros? Some Problems and Solutions*
Jiafeng Chen and
Jonathan Roth
The Quarterly Journal of Economics, 2024, vol. 139, issue 2, 891-936
Abstract:
When studying an outcome Y that is weakly positive but can equal zero (e.g., earnings), researchers frequently estimate an average treatment effect (ATE) for a “log-like” transformation that behaves like log (Y) for large Y but is defined at zero (e.g., log (1 + Y), ). We argue that ATEs for log-like transformations should not be interpreted as approximating percentage effects, since unlike a percentage, they depend on the units of the outcome. In fact, we show that if the treatment affects the extensive margin, one can obtain a treatment effect of any magnitude simply by rescaling the units of Y before taking the log-like transformation. This arbitrary unit dependence arises because an individual-level percentage effect is not well-defined for individuals whose outcome changes from zero to nonzero when receiving treatment, and the units of the outcome implicitly determine how much weight the ATE for a log-like transformation places on the extensive margin. We further establish a trilemma: when the outcome can equal zero, there is no treatment effect parameter that is an average of individual-level treatment effects, unit invariant, and point identified. We discuss several alternative approaches that may be sensible in settings with an intensive and extensive margin, including (i) expressing the ATE in levels as a percentage (e.g., using Poisson regression), (ii) explicitly calibrating the value placed on the intensive and extensive margins, and (iii) estimating separate effects for the two margins (e.g., using Lee bounds). We illustrate these approaches in three empirical applications.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (48)
Downloads: (external link)
http://hdl.handle.net/10.1093/qje/qjad054 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
Working Paper: Logs with zeros? Some problems and solutions (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:qjecon:v:139:y:2024:i:2:p:891-936.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
The Quarterly Journal of Economics is currently edited by Robert J. Barro, Lawrence F. Katz, Nathan Nunn, Andrei Shleifer and Stefanie Stantcheva
More articles in The Quarterly Journal of Economics from President and Fellows of Harvard College
Bibliographic data for series maintained by Oxford University Press (joanna.bergh@oup.com).