EconPapers    
Economics at your fingertips  
 

Triangular approximations for continuous random variables in risk analysis

D Johnson ()
Additional contact information
D Johnson: Loughborough University, Leicestershire

Journal of the Operational Research Society, 2002, vol. 53, issue 4, 457-467

Abstract: Abstract This paper examines further the problem of approximating the distribution of a continuous random variable based on three key percentiles, typically the median (50th percentile) and the 5% points (5th and 95th percentiles). This usually involves the two main distribution parameters, the mean and standard deviation, and, if possible, the distribution function concerned. Previous research has shown that the Pearson–Tukey formulae provide highly accurate estimates of the mean and standard deviation of a beta distribution (of the first kind), and that simple modifications to the standard deviation formula will improve the accuracy even further. However, little work has been done to establish the accuracy of these formulae for other distributions, or to examine the accuracy of alternative formulae based on triangular distribution approximations. We show that the Pearson–Tukey mean approximation remains highly accurate for a range of unbounded distributions, although the accuracy in these cases can be improved by a slightly different 3:10:3 weighting of the 5%, 50% and 95% points. In contrast, the Pearson–Tukey standard deviation formula is much less accurate for unbounded distributions, and can be bettered by a triangular approximation whose parameters are estimated from simple linear combinations of the three percentile points. In addition, triangular approximations allow the underlying distribution function to be estimated by a triangular cdf. It is shown that simple formulae for estimating the triangular parameters, involving weights of 23:−6:−1, −13:42:−13 and −1:−6:23, give not only universally accurate mean and standard deviation estimates, but also provide a good fit to the distribution function with a Kolmogorov–Smirov statistic which averages 0.1 across a wide range of distributions, and an even better fit for distributions which are not highly skewed.

Keywords: risk analysis; estimation; triangular distribution; beta distribution (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2601330 Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:53:y:2002:i:4:d:10.1057_palgrave.jors.2601330

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274

DOI: 10.1057/palgrave.jors.2601330

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook

More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jorsoc:v:53:y:2002:i:4:d:10.1057_palgrave.jors.2601330