Data envelopment analysis with stochastic data
John Ruggiero ()
Additional contact information
John Ruggiero: University of Dayton
Journal of the Operational Research Society, 2004, vol. 55, issue 9, 1008-1012
Abstract:
Abstract Data envelopment analysis (DEA) has proven to be a useful technique in evaluating the efficiency of decision making units that produce multiple-outputs using multiple-inputs. However, the ability to estimate efficiency reliably is hampered in the presence of measurement error and other statistical noise. A main and legitimate criticism of all deterministic models is the inability to separate out measurement error from inefficiency, both of which are unobserved. In this paper, we consider panel data models of efficiency estimation. One DEA model that has been used averages cross-sectional efficiency estimates across time and has been shown to work relatively well. In this paper, it is shown that this approach leads to biased efficiency estimates and provide an alternative model that corrects this problem. The approaches are compared using simulated data for illustrative purposes.
Keywords: stochastic frontier; DEA (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2601779 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:55:y:2004:i:9:d:10.1057_palgrave.jors.2601779
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2601779
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().