Mathematical programming models for piecewise-linear discriminant analysis
J J Glen ()
Additional contact information
J J Glen: University of Edinburgh, Management School
Journal of the Operational Research Society, 2005, vol. 56, issue 3, 331-341
Abstract:
Abstract Mathematical programming (MP) discriminant analysis models are widely used to generate linear discriminant functions that can be adopted as classification models. Nonlinear classification models may have better classification performance than linear classifiers, but although MP methods can be used to generate nonlinear discriminant functions, functions of specified form must be evaluated separately. Piecewise-linear functions can approximate nonlinear functions, and two new MP methods for generating piecewise-linear discriminant functions are developed in this paper. The first method uses maximization of classification accuracy (MCA) as the objective, while the second uses an approach based on minimization of the sum of deviations (MSD). The use of these new MP models is illustrated in an application to a test problem and the results are compared with those from standard MCA and MSD models.
Keywords: classification models; discriminant analysis; mathematical programming (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2601818 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:56:y:2005:i:3:d:10.1057_palgrave.jors.2601818
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2601818
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().