Estimating completion-time distribution in stochastic activity networks
Shih N-H ()
Additional contact information
Shih N-H: National Pingtung Institute of Commerce
Journal of the Operational Research Society, 2005, vol. 56, issue 6, 744-749
Abstract:
Abstract This paper deals with simulation-based estimation of the probability distribution for completion time in stochastic activity networks. These distribution functions may be valuable in many applications. A simulation method, using importance-sampling techniques, is presented for estimation of the probability distribution function. Separating the state space into two sets, one which must be sampled and another which need not be, is suggested. The sampling plan of the simulation can then be decided after the probabilities of the two sets are adjusted. A formula for the adjustment of the probabilities is presented. It is demonstrated that the estimator is unbiased and the upper bound of variance minimized. Adaptive sampling, utilizing the importance sampling techniques, is discussed to solve problems where there is no information or more than one way to separate the state space. Examples are used to illustrate the sampling plan.
Keywords: simulation; project management; importance sampling (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2601880 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:56:y:2005:i:6:d:10.1057_palgrave.jors.2601880
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2601880
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().