European generic scoring models using survival analysis
G Andreeva ()
Additional contact information
G Andreeva: University of Edinburgh
Journal of the Operational Research Society, 2006, vol. 57, issue 10, 1180-1187
Abstract:
Abstract Credit scoring discriminates between ‘good’ and ‘bad’ credit risks to assist credit-grantors in making lending decisions. Such discrimination may not be a good indicator of profit, while survival analysis allows profit to be modelled. The paper explores the application of parametric accelerated failure time and proportional hazards models and Cox non-parametric model to the data from the retail card (revolving credit) from three European countries. The predictive performance of three national models is tested for different timescales of default and then compared to that of a single generic model for a timescale of 25 months. It is found that survival analysis national and generic models produce predictive quality, which is very close to the current industry standard—logistic regression. Stratification is investigated as a way of extending Cox non-parametric proportional hazards model to tackle heterogeneous segments in the population.
Keywords: credit scoring; regression analysis; risk; banking (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602091 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:57:y:2006:i:10:d:10.1057_palgrave.jors.2602091
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2602091
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().