Management of supply chain: an alternative modelling technique for forecasting
S Datta (),
Clive Granger,
M Barari and
T Gibbs
Additional contact information
S Datta: Massachusetts Institute of Technology
M Barari: Missouri State University
T Gibbs: Intel Corporation
Journal of the Operational Research Society, 2007, vol. 58, issue 11, 1459-1469
Abstract:
Abstract Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic identification technologies, such as radio frequency identification (RFID). The relationship of various parameters that may change and impact decisions are so abundant that any credible attempt to drive meaningful associations are in demand to deliver the value from acquired data. This paper proposes some modifications to adapt an advanced forecasting technique (GARCH) with the aim to develop it as a decision support tool applicable to a wide variety of operations including supply chain management (SCM). We have made an attempt to coalesce a few different ideas toward a ‘solutions’ approach aimed to model volatility and in the process, perhaps, better manage risk. It is possible that industry, governments, corporations, businesses, security organizations, consulting firms and academics with deep knowledge in one or more fields, may spend the next few decades striving to synthesize one or more models of effective modus operandi to combine these ideas with other emerging concepts, tools, technologies and standards to collectively better understand, analyse and respond to uncertainty. However, the inclination to reject deep-rooted ideas based on inconclusive results from pilot projects is a detrimental trend and begs to ask the question whether one can aspire to build an elephant using mouse as a model.
Keywords: forecasting; supply chain management; multivariate GARCH; risk analysis; intelligent decision systems; RFID; sensor data (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602419 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:58:y:2007:i:11:d:10.1057_palgrave.jors.2602419
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2602419
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().