Forecasting S-shaped diffusion processes via response modelling methodology
H Shore () and
D Benson-Karhi
Additional contact information
H Shore: Ben-Gurion University
D Benson-Karhi: Ben-Gurion University
Journal of the Operational Research Society, 2007, vol. 58, issue 6, 720-728
Abstract:
Abstract Diffusion processes abound in various areas of corporate activities, such as the time-dependent behaviour of cumulative demand of a new product, or the adoption rate of a technological innovation. In most cases, the proportion of the population that has adopted the new product by time t behaves like an S-shaped curve, which resembles the sigmoid curve typical to many known statistical distribution functions. This analogy has motivated the common use of the latter for forecasting purposes. Recently, a new methodology for empirical modelling has been developed, termed response modelling methodology (RMM). The error distribution of the RMM model has been shown to model well variously shaped distribution functions, and may therefore be adequate to forecast sigmoid-curve processes. In particular, RMM may be applied to forecast S-shaped diffusion processes. In this paper, forty-seven data sets, assembled from published sources by Meade and Islam, are used to compare the accuracy and the stability of RMM-generated forecasts, relative to current commonly applied models. Results show that in most comparisons RMM forecasts outperform those based on any individually selected distributional model.
Keywords: diffusion processes; forecasting; inverse normalizing transformations; sigmoid curves; nonlinear regression; response modeling methodology (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602187 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:58:y:2007:i:6:d:10.1057_palgrave.jors.2602187
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2602187
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().