EconPapers    
Economics at your fingertips  
 

An additive utility mixed integer programming model for nonlinear discriminant analysis

J J Glen ()
Additional contact information
J J Glen: University of Edinburgh

Journal of the Operational Research Society, 2008, vol. 59, issue 11, 1492-1505

Abstract: Abstract Mathematical programming (MP) discriminant analysis models can be used to develop classification models for assigning observations of unknown class membership to one of a number of specified classes using values of a set of features associated with each observation. Since most MP discriminant analysis models generate linear discriminant functions, these MP models are generally used to develop linear classification models. Nonlinear classifiers may, however, have better classification performance than linear classifiers. In this paper, a mixed integer programming model is developed to generate nonlinear discriminant functions composed of monotone piecewise-linear marginal utility functions for each feature and the cut-off value for class membership. It is also shown that this model can be extended for feature selection. The performance of this new MP model for two-group discriminant analysis is compared with statistical discriminant analysis and other MP discriminant analysis models using a real problem and a number of simulated problem sets.

Keywords: mathematical programming; discriminant analysis; nonlinear classifiers (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602485 Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:59:y:2008:i:11:d:10.1057_palgrave.jors.2602485

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274

DOI: 10.1057/palgrave.jors.2602485

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook

More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jorsoc:v:59:y:2008:i:11:d:10.1057_palgrave.jors.2602485