Single machine scheduling with a time-dependent learning effect and deteriorating jobs
Wang J-B ()
Additional contact information
Wang J-B: Shenyang Institute of Aeronautical Engineering
Journal of the Operational Research Society, 2009, vol. 60, issue 4, 583-586
Abstract:
Abstract The paper deals with the single machine scheduling problems with a time-dependent learning effect and deteriorating jobs. By the effects of time-dependent learning and deterioration, we mean that the processing time of a job is defined by function of its starting time and total normal processing time of jobs in front of it in the sequence. It is shown that even with the introduction of a time-dependent learning effect and deteriorating jobs to job processing times, the single machine makespan minimization problem remain polynomially solvable. But for the total completion time minimization problem, the classical shortest processing time first rule or largest processing time first rule cannot give an optimal solution.
Keywords: scheduling; single machine; time dependent; learning effect; deteriorating jobs (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602607 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:60:y:2009:i:4:d:10.1057_palgrave.jors.2602607
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2602607
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().