Plant residual time modelling based on observed variables in oil samples
W Wang () and
B Hussin
Additional contact information
W Wang: University of Salford
B Hussin: Universiti Teknikal Malaysia
Journal of the Operational Research Society, 2009, vol. 60, issue 6, 789-796
Abstract:
Abstract This paper presents a model and methodology for estimating the residual time of a plant item. This plant item can be an engine or any complex technical system monitored by a regularly spaced oil analysis programme. Typically in the oil samples taken, two groups of observed variables are available, namely, metal concentrations and variables related to the condition of the lubricant and contaminants. We term the former as internal variables and the latter as external variables. External variables are those that may cause the change of the underlying condition of the plant item and therefore the residual time, while internal variables are those variables that only reflect the residual time but cannot change it. We modelled both variables in an oil-based monitoring case, but the principle can be generalized to other monitoring situations. The main techniques used are stochastic filtering for residual time prediction and the maximum likelihood method for parameters estimation. The model established was fitted to the real data of marine diesel engines monitored by an oil analysis programme and the results are presented.
Keywords: condition monitoring; residual time; prediction; oil analysis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://link.springer.com/10.1057/palgrave.jors.2602621 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:60:y:2009:i:6:d:10.1057_palgrave.jors.2602621
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/palgrave.jors.2602621
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().