Domain knowledge integration in data mining using decision tables: case studies in churn prediction
E Lima (),
C Mues () and
B Baesens
Additional contact information
E Lima: University of Southampton
C Mues: University of Southampton
B Baesens: University of Southampton
Journal of the Operational Research Society, 2009, vol. 60, issue 8, 1096-1106
Abstract:
Abstract Companies' interest in customer relationship modelling and key issues such as customer lifetime value and churn has substantially increased over the years. However, the complexity of building, interpreting and applying these models creates obstacles for their implementation. The main contribution of this paper is to show how domain knowledge can be incorporated in the data mining process for churn prediction, viz. through the evaluation of coefficient signs in a logistic regression model, and secondly, by analysing a decision table (DT) extracted from a decision tree or rule-based classifier. An algorithm to check DTs for violations of monotonicity constraints is presented, which involves the repeated application of condition reordering and table contraction to detect counter-intuitive patterns. Both approaches are applied to two telecom data sets to empirically demonstrate how domain knowledge can be used to ensure the interpretability of the resulting models.
Keywords: domain knowledge; data mining; churn; decision tables (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1057/jors.2008.161 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:60:y:2009:i:8:d:10.1057_jors.2008.161
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/jors.2008.161
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().