Monte Carlo scenario generation for retail loan portfolios
J L Breeden () and
D Ingram ()
Additional contact information
J L Breeden: Strategic Analytics Inc.
D Ingram: Strategic Analytics Inc.
Journal of the Operational Research Society, 2010, vol. 61, issue 3, 399-410
Abstract:
Abstract Monte Carlo simulation is a common method for studying the volatility of market traded instruments. It is less employed in retail lending, because of the inherent nonlinearities in consumer behaviour. In this paper, we use the approach of Dual-time Dynamics to separate loan performance dynamics into three components: a maturation function of months-on-books, an exogenous function of calendar date, and a quality function of vintage origination date. The exogenous function captures the impacts from the macroeconomic environment. Therefore, we want to generate scenarios for the possible futures of these environmental impacts. To generate such scenarios, we must go beyond the random walk methods most commonly applied in the analysis of market-traded instruments. Retail portfolios exhibit autocorrelation structure and variance growth with time that requires more complex modelling. This paper is aimed at practical application and describes work using ARMA and ARIMA models for scenario generation, rules for selecting the correct model form given the input data, and validation methods on the scenario generation. We find when the goal is capturing the future volatility via Monte Carlo scenario generation, that model selection does not follow the same rules as for forecasting. Consequently, tests more appropriate to reproducing volatility are proposed, which assure that distributions of scenarios have the proper statistical characteristics. These results are supported by studies of the variance growth properties of macroeconomic variables and theoretical calculations of the variance growth properties of various models. We also provide studies on historical data showing the impact of training length on model accuracy and the existence of differences between macroeconomic epochs.
Keywords: banking; econometrics; forecasting; risk; simulation; time series (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1057/jors.2009.105 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:61:y:2010:i:3:d:10.1057_jors.2009.105
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/jors.2009.105
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().