On the automatic discovery of variants of the NEH procedure for flow shop scheduling using genetic programming
J A Vázquez-Rodríguez () and
G Ochoa
Additional contact information
J A Vázquez-Rodríguez: University of Nottingham
G Ochoa: University of Nottingham
Journal of the Operational Research Society, 2011, vol. 62, issue 2, 381-396
Abstract:
Abstract We use genetic programming to find variants of the well-known Nawaz, En-score and Ham (NEH) heuristic for the permutation flow shop problem. Each variant uses a different ranking function to prioritize operations during schedule construction. We have tested our ideas on problems where jobs have release times, due dates, and weights and have considered five objective functions: makespan, sum of tardiness, sum of weighted tardiness, sum of completion times and sum of weighted completion times. The implemented genetic programming system has been carefully tuned and used to generate one variant of NEH for each objective function. The new NEHs, obtained with genetic programming, have been compared with the original NEH and randomized NEH versions on a large set of benchmark problems. Our results indicate that the NEH variants discovered by genetic programming are superior to the original NEH and its stochastic version on most of the problems investigated.
Keywords: heuristics; production; genetic programming; genetic algorithms; hyper-heuristics (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1057/jors.2010.132 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:62:y:2011:i:2:d:10.1057_jors.2010.132
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/jors.2010.132
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().