EconPapers    
Economics at your fingertips  
 

Multi-item sales forecasting with total and split exponential smoothing

J W Taylor ()
Additional contact information
J W Taylor: University of Oxford

Journal of the Operational Research Society, 2011, vol. 62, issue 3, 555-563

Abstract: Abstract Efficient supply chain management relies on accurate demand forecasting. Typically, forecasts are required at frequent intervals for many items. Forecasting methods suitable for this application are those that can be relied upon to produce robust and accurate predictions when implemented within an automated procedure. Exponential smoothing methods are a common choice. In this empirical case study paper, we evaluate a recently proposed seasonal exponential smoothing method that has previously been considered only for forecasting daily supermarket sales. We term this method ‘total and split’ exponential smoothing, and apply it to monthly sales data from a publishing company. The resulting forecasts are compared against a variety of methods, including several available in the software currently used by the company. Our results show total and split exponential smoothing outperforming the other methods considered. The results were also impressive for a method that trims outliers and then applies simple exponential smoothing.

Keywords: forecasting; exponential smoothing; supply chain; robust methods (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1057/jors.2010.95 Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:62:y:2011:i:3:d:10.1057_jors.2010.95

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274

DOI: 10.1057/jors.2010.95

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook

More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jorsoc:v:62:y:2011:i:3:d:10.1057_jors.2010.95