Peak demand forecasting for a seasonal product using Bayesian approach
M A Rahman (),
B R Sarker and
L A Escobar
Additional contact information
M A Rahman: University of Southern Mississippi
B R Sarker: Louisiana State University
L A Escobar: Louisiana State University
Journal of the Operational Research Society, 2011, vol. 62, issue 6, 1019-1028
Abstract:
Abstract An actual demand-forecasting problem of the US apparel dealers is studied. Demand is highly fluctuating during the peak sale season and low prior to the peak season. The model is described by the continuous time stochastic process applying the Bayesian process. The standard gamma distribution is selected for the demand process and an inverse gamma distribution is chosen as the conjugate prior for the model. The choice is supported by the maximum likelihood estimate among a number of non-negative distribution models. The proposed Bayesian models predict the probability of the future demand expressed explicitly conditional on the observed demand prior to the peak season. The data set illustrates partial demand of a seasonal product procured by the US dealers from overseas. In recent years, hazard and operational risks due to weather disasters and equipment shutdowns were felt significantly. These caused supply chain disruption and unrecorded demand. The model is extended to contribute to forecast from an unrecorded data set due to supply disruption. Forecasts are compared with real data and a widely implemented adaptive Holt-Winters (H-W) seasonal forecasting model. Results show that the forecasts calculated by the proposed methods do better than those of the adaptive H-W model.
Keywords: Bayesian forecasting method; seasonal demand; incomplete data set (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1057/jors.2010.58 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:62:y:2011:i:6:d:10.1057_jors.2010.58
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/jors.2010.58
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().