A novel hybrid algorithm combining hunting search with harmony search algorithm for training neural networks
S Kulluk
Additional contact information
S Kulluk: Erciyes University, Kayseri, Turkey
Journal of the Operational Research Society, 2013, vol. 64, issue 5, 748-761
Abstract:
Neural networks (NNs) are one of the most widely used techniques for pattern classification. Owing to the most common back-propagation training algorithm of NN being extremely computationally intensive and it having some drawbacks, such as converging into local minima, many meta-heuristic algorithms have been applied to training of NNs. This paper presents a novel hybrid algorithm which is the integration of Harmony Search (HS) and Hunting Search (HuS) algorithms, called h_HS-HuS, in order to train Feed-Forward Neural Networks (FFNNs) for pattern classification. HS and HuS algorithms are recently proposed meta-heuristic algorithms inspired from the improvisation process of musicians and hunting of animals, respectively. Harmony search builds up the main structure of the hybrid algorithm, and HuS forms the pitch adjustment phase of the HS algorithm. The performance proposed algorithm is compared to conventional and meta-heuristic algorithms. Empirical tests are carried out by training NNs on nine widely used classification benchmark problems. The experimental results show that the proposed hybrid harmony-hunting algorithm is highly capable of training NNs.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.palgrave-journals.com/jors/journal/v64/n5/pdf/jors201279a.pdf Link to full text PDF (application/pdf)
http://www.palgrave-journals.com/jors/journal/v64/n5/full/jors201279a.html Link to full text HTML (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:64:y:2013:i:5:p:748-761
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().