EconPapers    
Economics at your fingertips  
 

Electricity price forecasting accounting for renewable energies: optimal combined forecasts

Carolina Garcia-Martos, Eduardo Caro and Maria Jesus Sanchez
Additional contact information
Carolina Garcia-Martos: Universidad Politécnica de Madrid, Madrid, Spain
Eduardo Caro: Universidad Politecnica de Madrid, Madrid, Spain
Maria Jesus Sanchez: Universidad Politecnica de Madrid, Madrid, Spain

Journal of the Operational Research Society, 2015, vol. 66, issue 5, 871-884

Abstract: Electricity price forecasting is an interesting problem for all the agents involved in electricity market operation. For instance, every profit maximisation strategy is based on the computation of accurate one-day-ahead forecasts, which is why electricity price forecasting has been a growing field of research in recent years. In addition, the increasing concern about environmental issues has led to a high penetration of renewable energies, particularly wind. In some European countries such as Spain, Germany and Denmark, renewable energy is having a deep impact on the local power markets. In this paper, we propose an optimal model from the perspective of forecasting accuracy, and it consists of a combination of several univariate and multivariate time series methods that account for the amount of energy produced with clean energies, particularly wind and hydro, which are the most relevant renewable energy sources in the Iberian Market. This market is used to illustrate the proposed methodology, as it is one of those markets in which wind power production is more relevant in terms of its percentage of the total demand, but of course our method can be applied to any other liberalised power market. As far as our contribution is concerned, first, the methodology proposed by García-Martos et al (2007 and 2012) is generalised twofold: we allow the incorporation of wind power production and hydro reservoirs, and we do not impose the restriction of using the same model for 24 h. A computational experiment and a Design of Experiments (DOE) are performed for this purpose. Then, for those hours in which there are two or more models without statistically significant differences in terms of their forecasting accuracy, a combination of forecasts is proposed by weighting the best models (according to the DOE) and minimising the Mean Absolute Percentage Error (MAPE). The MAPE is the most popular accuracy metric for comparing electricity price forecasting models. We construct the combination of forecasts by solving several nonlinear optimisation problems that allow computation of the optimal weights for building the combination of forecasts. The results are obtained by a large computational experiment that entails calculating out-of-sample forecasts for every hour in every day in the period from January 2007 to December 2009. In addition, to reinforce the value of our methodology, we compare our results with those that appear in recent published works in the field. This comparison shows the superiority of our methodology in terms of forecasting accuracy.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.palgrave-journals.com/jors/journal/v66/n5/pdf/jors2013177a.pdf Link to full text PDF (application/pdf)
http://www.palgrave-journals.com/jors/journal/v66/n5/full/jors2013177a.html Link to full text HTML (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:66:y:2015:i:5:p:871-884

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274

Access Statistics for this article

Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook

More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:jorsoc:v:66:y:2015:i:5:p:871-884