Hierarchical game joint optimization for product family-driven modular design
Shuang Ma,
Gang Du,
Jianxin (Roger) Jiao and
Ruchuan Zhang
Additional contact information
Shuang Ma: Tianjin University
Gang Du: Tianjin University
Jianxin (Roger) Jiao: Georgia Institute of Technology
Ruchuan Zhang: Tianjin University
Journal of the Operational Research Society, 2016, vol. 67, issue 12, 1496-1509
Abstract:
Abstract Product family design takes advantage of modularity to enable product variety while maintaining mass production efficiency. Focusing on a set of similar product variants, product family modularity (PFM) is achieved by reusing common components and minimizing fulfillment costs throughout the product realization process. On the other hand, traditional modular design emphasizes technical system modularity (TSM) that focuses on a single product and is geared towards product decomposition in light of technical feasibility. While it is appealing to incorporate product family considerations into the prevailing modularization theories and methods, the key challenge lies in that TSM and PFM are essentially associated with different goals and decision criteria. This leads to a dilemma that TSM and PFM are competing in decision making for identification of modules by grouping similar components. Realizing the importance of game-theoretic decision making underlying product family-driven modular design, this paper proposes to leverage TSM and PFM within a coherent framework of joint optimization. A hierarchical game joint optimization model is developed in line with bilevel programming. A two-dimension evaluation criteria taxonomy is presented for TSM and PFM criteria measure. A bilevel nested genetic algorithm is put forward for efficient solution of the non-linear hierarchical joint optimization model. A case study of robotic vacuum cleaner modular design is reported to gain insight into joint optimization of TSM and PFM. Results and analyses demonstrate that the proposed hierarchical joint optimization model is robust and can empower modular design in cohesion with product family concerns.
Keywords: modular design; product family; hierarchical game joint optimization; bilevel programming (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1057/jors.2016.32 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:67:y:2016:i:12:d:10.1057_jors.2016.32
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/jors.2016.32
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().