An ILP and simulation model to optimize search and rescue helicopter operations
Mumtaz Karatas (),
Nasuh Razi () and
Murat M. Gunal ()
Additional contact information
Mumtaz Karatas: Turkish Naval Academy
Nasuh Razi: Turkish Naval Academy
Murat M. Gunal: Turkish Naval Academy
Journal of the Operational Research Society, 2017, vol. 68, issue 11, 1335-1351
Abstract:
Abstract Maritime search and rescue (SAR) operations, conducted for rendering aid to the victims in need of help at sea, play a crucial role in dropping the number of causalities. Therefore, it is of high importance to organize SAR operations properly. In this paper, we compose a hybrid methodology which combines optimization and simulation to allocate SAR helicopters. First, we build an integer linear programming (ILP) model to provide an effective deployment plan and use it as an input to a simulation model which includes constraints that the ILP model cannot tackle. Next, using a rule-based algorithm, we generate alternative solutions and seek better plans that exist in the vicinity of the ILP model solution. We perform our methodology on the historical incident data in the Aegean Sea region. Results show that the hybrid methodology we adopted leads to a more effective utilization of resources than the optimization model alone.
Keywords: resource allocation; search and rescue; discrete event simulation (DES) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1057/s41274-016-0154-7 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:68:y:2017:i:11:d:10.1057_s41274-016-0154-7
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
DOI: 10.1057/s41274-016-0154-7
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().