An algorithm for predicting job vacancies using online job postings in Australia
David Evans (),
Claire Mason,
Haohui Chen and
Andrew Reeson
Additional contact information
David Evans: CSIRO
Claire Mason: CSIRO
Haohui Chen: CSIRO
Andrew Reeson: CSIRO
Palgrave Communications, 2023, vol. 10, issue 1, 1-9
Abstract:
Abstract Timely and accurate statistics on the labour market enable policymakers to rapidly respond to changing economic conditions. Estimates of job vacancies by national statistical agencies are highly accurate but reported infrequently and with time lags. In contrast, online job postings provide a high-frequency indicator of vacancies with less accuracy. In this study we develop a robust signal averaging algorithm to measure job vacancies using online job postings data. We apply the algorithm using data on Australian job postings and show that it accurately predicts changes in job vacancies over a 4.5-year period. We also show that the algorithm is significantly more accurate than using raw counts of job postings to predict vacancies. The algorithm therefore offers a promising approach to the timely and reliable measurement of changes in vacancies.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-023-01562-9 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01562-9
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-023-01562-9
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().