EconPapers    
Economics at your fingertips  
 

Disequilibrium and complexity across scales: a patch-dynamics framework for organizational ecology

Jin Xu () and Joep Cornelissen
Additional contact information
Jin Xu: South China Normal University
Joep Cornelissen: Erasmus University Rotterdam

Palgrave Communications, 2023, vol. 10, issue 1, 1-13

Abstract: Abstract Based on equilibrium assumptions, traditional ecological models have been widely applied in the fields of management and organization studies. While research using these models is still ongoing, studies have nonetheless struggled with ways to address multiple levels of analysis, uncertainty, and complexity in their analyses. This paper conceptualizes the dynamic co-evolution mechanisms that operate in an ecosystem across multiple organizational scales. Specifically, informed by recent advances in modelling in biology, a general ‘patch-dynamics’ framework that is theoretically and methodologically able to capture disequilibrium, uncertainty, disturbances, and changes in organizational populations or ecosystems, as complex and dynamically evolving resource environments are introduced. Simulation models are built to show the patch-dynamics framework’s functioning and test its robustness. The patch-dynamics framework and modelling methodology integrates equilibrium and disequilibrium perspectives, co-evolutions across multiple organization levels, uncertainties, and random disturbances into a single framework, opening new avenues for future research on topics in the field of management and organization studies, as well as on the mechanisms that shape ecosystems. Such a framework has the potential to help analyse the sustainability and healthiness of the business environment, and deserves more attention in future research on management and organization theory, particularly in the context of significant uncertainty and disturbances in business and management practice. Overall, the paper offers a distinct theoretical perspective and methodology for modelling population and ecosystem dynamics across different scales.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1057/s41599-023-01730-x Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01730-x

Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about

DOI: 10.1057/s41599-023-01730-x

Access Statistics for this article

More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-01730-x