Ethics and discrimination in artificial intelligence-enabled recruitment practices
Zhisheng Chen ()
Additional contact information
Zhisheng Chen: Nanjing University of Aeronautics and Astronautics
Palgrave Communications, 2023, vol. 10, issue 1, 1-12
Abstract:
Abstract This study aims to address the research gap on algorithmic discrimination caused by AI-enabled recruitment and explore technical and managerial solutions. The primary research approach used is a literature review. The findings suggest that AI-enabled recruitment has the potential to enhance recruitment quality, increase efficiency, and reduce transactional work. However, algorithmic bias results in discriminatory hiring practices based on gender, race, color, and personality traits. The study indicates that algorithmic bias stems from limited raw data sets and biased algorithm designers. To mitigate this issue, it is recommended to implement technical measures, such as unbiased dataset frameworks and improved algorithmic transparency, as well as management measures like internal corporate ethical governance and external oversight. Employing Grounded Theory, the study conducted survey analysis to collect firsthand data on respondents’ experiences and perceptions of AI-driven recruitment applications and discrimination.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1057/s41599-023-02079-x Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:palcom:v:10:y:2023:i:1:d:10.1057_s41599-023-02079-x
Ordering information: This journal article can be ordered from
https://www.nature.com/palcomms/about
DOI: 10.1057/s41599-023-02079-x
Access Statistics for this article
More articles in Palgrave Communications from Palgrave Macmillan
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().